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About the Pacific Southwest Region University Transportation Center 
 

The Pacific Southwest Region University Transportation Center (UTC) is the Region 9 University Transportation 

Center funded under the US Department of Transportation’s University Transportation Centers Program. Established 

in 2016, the Pacific Southwest Region UTC (PSR) is led by the University of Southern California and includes seven 

partners: Long Beach State University; University of California, Davis; University of California, Irvine; University of 

California, Los Angeles; University of Hawaii; Northern Arizona University; Pima Community College. 

The Pacific Southwest Region UTC conducts an integrated, multidisciplinary program of research, education and 

technology transfer aimed at improving the mobility of people and goods throughout the region.  Our program is 

organized around four themes:  1) technology to address transportation problems and improve mobility, 2) 

improving mobility for vulnerable populations, 3) Improving resilience and protecting the environment, and 4) 

managing mobility in high growth areas. 
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Abstract 
 

Los Angeles is ranked the most congested city in the U.S. with a typical half-hour commute taking 81% longer during 

evening peak periods and 60% longer during the morning peak. These traffic congestions result in a large social and 

economic detriment and raise serious concern for drivers and transportation agencies. Therefore, increasing 

ridership of public transportations and hence reducing traffic congestions has been one of the primary objectives 

for transportation agencies and policymakers. Previously, many researchers have worked on estimating historical 

performance measurements of public transportation systems. Beyond historical performance measurements, 

accurate predictive analysis of performance reliability helps to manage rider expectations as well as to provide a 

powerful tool for transportation agencies to coordinate the public transportation vehicles. For the first time, there 

is a unique opportunity to use data-driven approaches that analyze big datasets collected from transportation 

systems to understand the factors causing traffic congestions and in turn, help to forecast the performance reliability 

of public transportation vehicles.  

In this project, we developed a deep learning approach for traffic flow forecasting and bus arrival time 

estimation in Los Angeles. First, we developed a novel Graph Convolutional Recurrent Neural Network (GCRNN) to 

model and forecast traffic flows at different spatial and temporal resolutions. Our GCRNN model considers not only 

the location of traffic sensors but also their relationships (i.e., topological dependency) in space, which was critical 

to achieving the best performance for all forecasting horizons compared to the existing methods. Next, we 

implemented a Geo-Convolution Long Short-Term Memory (Geo-Conv LSTM) framework to model bus Estimated 

Time of Arrival (ETA) by incorporating the traffic flow predictions of our GCRNN. Using the real-world traffic sensor 

datasets archived in our data warehouse, we showed that our proposed bus ETA model is more accurate than the 

existing method, Gradient Boosted Decision Tree (GBDT), by 27% in estimating bus travel time. Lastly, we deployed 

both models as web applications so that users can access traffic prediction data and check bus arrival times to a 

destination location from a starting point. 
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A Deep-Learning Technique for Bus Travel Time Prediction 
using Traffic Forecasting Measurements  

Executive Summary 
 

In 2015, 439 metropolitan areas experienced 7 billion vehicle-hours of delay, which is equivalent to 3 billion gallons 

in wasted fuel and $160 billion in lost productivity. These traffic congestions result in a large social and economic 

detriment to the U.S. and raise serious concern for drivers and transportation agencies. Therefore, increasing 

ridership of public transportations and hence reducing traffic congestions has been one of the primary objectives 

for transportation agencies and policymakers. Los Angeles usually tops the list of gridlock-plagued cities with an 

average of 80 hours of delay per commuter a year and improving ridership of public transportation like the public 

bus system is one of the primary objectives for the California Department of Transportation. Historical performance 

measurements of public transportation systems can help identify problems for improving ridership. Beyond 

historical performance measurements, accurate predictive analysis of performance reliability helps to manage rider 

expectations (e.g., will the bus be on time in the next 30 minutes?) as well as to provide a powerful tool for 

transportation agencies to coordinate the public transportation vehicles.  

At USC’s Integrated Media Systems Center (IMSC) with our partnership with Los Angeles Metropolitan 

Transportation Authority (LA Metro) and METRANS, we developed a big transportation data warehouse-Archived 

Traffic Data Management System (ADMS). ADMS fuses and analyzes a very large-scale and high-resolution (both 

spatial and temporal) traffic sensor data from different transportation authorities in Southern California, including 

California Department of Transportation (Caltrans), Los Angeles Department of Transportation (LADOT), California 

Highway Patrol (CHP), Long Beach Transit (LBT). This data set includes both inventory and real-time data with update 

rate as high as every 30 seconds for freeway and arterial traffic sensors (14,500 loop-detectors) covering 4,300 miles, 

2,000 bus, and train automatic vehicle location (AVL), incidents such as accidents, traffic hazards and road closures 

reported (approximately 400 per day) by LAPD and CHP, and ramp meters. We have been continuously collecting 

and archiving datasets for the past 5 years. ADMS, with 11TB annual growth, is the largest traffic sensor data 

warehouse built so far in Southern California. Using this big traffic dataset, we have a unique opportunity to use 

data-driven approaches to understand the factors causing traffic congestions and in turn, help to forecast the 

performance reliability of public transportation vehicles.  

In this project, we developed a reliability analysis system using Deep Learning (DL) techniques to forecast 

the future performances of the public bus system in Los Angeles. First, we developed a novel Graph Convolutional 

Recurrent Neural Network (GCRNN) to model and forecast traffic flows at different spatial (e.g., individual regions, 

road segments, or sensors) and the temporal (e.g., next 5 minutes and 30 minutes) resolutions. Our GCRNN model 

considers not only the location of traffic sensors but also their relationships (i.e., topological dependency) in space, 

which was critical to achieving the best performance for all forecasting horizons compared to the existing methods. 

Next, we implemented a Geo-Convolution Long Short-Term Memory (Geo-Conv LSTM) framework to model bus 

Estimated Time of Arrival (ETA) by incorporating the traffic flow predictions of our GCRNN. Using the real-world 

traffic sensor datasets archived in our data warehouse, we showed that our proposed bus ETA model is more 

accurate than the existing method, Gradient Boosted Decision Tree (GBDT), by 27% in estimating bus travel times. 

Lastly, we deployed both models as web applications so that users can access traffic prediction data and check bus 

arrival times to a destination location from a starting point. 
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1. Introduction  
In 2015, 439 metropolitan areas experienced 7 billion vehicle-hours of delay, which is equivalent to 3 billion gallons 

in wasted fuel and $160 billion in lost productivity. According to the TomTom Traffic Index, Los Angeles is ranked the 

most congested city in the U.S., the 12th most congested city worldwide, with a typical half-hour commute taking 

81% longer during evening peak periods and 60% longer during the morning peak. These traffic congestions result 

in a large social and economic detriment and raise serious concern for drivers and transportation agencies. Therefore, 

increasing ridership of public transportations and hence reducing traffic congestions has been one of the primary 

objectives for transportation agencies and policymakers. For example, improving the performance and reliability of 

public transportation vehicles has been one of the primary objectives for California Department of Transportation 

(Caltrans).  

Historical performance measurements of public transportation systems can help identify problems and 

potential solutions for improving ridership. For example, historical trends of bus travel-time reliability and on-time 

performance can help city transportation agencies to quickly identify potential problems with existing bus routes, 

such as quantifying the delays in bus lines caused by constructions in the city or making informed policy decisions 

including rearranging bus timetables. Beyond historical performance measurements, accurate predictive analysis of 

performance reliability helps to manage rider expectations (e.g., will the bus be on time in the next 30 minutes?) as 

well as to provide a powerful tool for transportation agencies to coordinate the public transportation vehicles. 

However, predictive analysis of the performance reliability of public transportation vehicles is challenging because 

a major factor impacting the (near) future performance reliability of public transportation vehicles is traffic 

congestion in the future. Data-driven approaches that use big datasets collected from transportation systems (e.g., 

bus trajectories, traffic sensors, accident logs) offer a unique opportunity to mine and understand the factors causing 

traffic congestions and in turn, help to forecast the performance reliability of public transportation vehicles.  

In this project, we developed a data-driven, deep learning approach for traffic flow forecasting and bus arrival 

time estimation. Specifically, we developed a novel Graph Convolutional Recurrent Neural Network (GCRNN) to 

model and forecast traffic flows at various spatial (e.g., individual regions, road segments, or sensors) and the 

temporal (e.g., next 5 minutes and 30 minutes) resolutions and achieved the best performance for all forecasting 

horizons compared to the existing methods. We also implemented a Geo-Convolution Long Short-Term Memory 

(Geo-Conv LSTM) framework to model bus ETA by incorporating the traffic flow predictions of our GCRNN. Using the 

real-world traffic sensor datasets archived in our data warehouse, we showed that our proposed bus ETA model is 

more accurate than the existing method, Gradient Boosted Decision Tree (GBDT), by 27% in estimating bus travel 

times. Lastly, we deployed both models as web applications so that users can access traffic prediction data and check 

bus arrival times to a destination location from a starting point.  

2. Traffic Prediction 
Traffic forecasting has been studied for decades and knowledge and data driven approaches are the two main 

approaches being used. In knowledge-driven methods, the role of existing knowledge and well-established theory is 

very important for designing a model [Cascetta+13] while data-driven methods let a model find its own rules or 

patterns based on big data. For example, vehicle traffic patterns are highly regular on a weekly period but can deviate 

unexpectedly in certain situations such as inclement weather, accidents, road work, etc. A purely data-driven 

approach would simply ask the model to handle all the different situations, while knowledge-driven systems will 

take advantage of existing knowledge to help guide the machine learning process. Auto-Regressive Integrated 

Moving Average (ARIMA) [Liu+11] model was the most statistically significant data-driven method for traffic 

forecasting and many variants of ARIMA were proposed. However, these models usually rely on the stationarity 
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assumption and they perform reasonably well during normal operating conditions but do not respond well to 

external system changes. Most recently, deep learning, which is a type of machine learning method, has drawn a lot 

of academic and industrial interests and has been applied with success in classification tasks, object detection, and 

so on. Deep learning algorithms use multi-layer architectures to extract inherent features in data from the lowest 

level to the highest level, and they can discover huge amounts of structure in the data. As a traffic flow process is 

complicated in nature, deep learning algorithms represent traffic features without prior knowledge and have shown 

good performance for traffic flow prediction [Lv+15] [Yu+17]. However, most of them didn’t consider the spatial 

structure of road networks. [Wu+16] and [Ma+17] model the spatial correlation with Convolutional Neural Networks 

(CNN), but the spatial structure is in the Euclidean space (e.g., 2D images). [Bruna+14] and [Defferrard+16] studied 

graph convolution, but only for undirected graphs. In this work, we represent the pair-wise spatial correlations 

between traffic sensors using a directed graph whose nodes are sensors and edge weights denote proximity between 

the sensor pairs measured by the road network distance. Then, we study the design of a deep recurrent neural 

network model to address temporal dynamics and spatial dependency in the graph in traffic forecasting. Finally, we 

compare our method with the existing work. 

FIGURE 1. GRAPH CONVOLUTIONAL RECURRENT NEURAL NETWORK FOR TRAFFIC FLOW PREDICTION 

 

 

2.1 Methodology 
Our proposed idea consists of two phases. In the first phase, we focus on how to combine temporal sequences (i.e., 

time-series) and spatial characteristics (i.e., topological dependency) of sensors to Recurrent Neural Networks (RNN). 

In the second phase, we study how to enable event-based and long-term traffic flow prediction.  

Recurrent Neural Network is a popular architecture of Neural Network which is used extensively with use 

cases consist of sequential data; RNN feeds back the output of the previous time frame to the next time frame in 

the network. Suppose the output of the network at t=1 is h0, while training the network at t=2 we will also consider 

h0, the output received from the previous instance of time. This property makes it very well suited to model temporal 

features, such as frames in a magnitude spectrogram or feature vectors in an activity matrix, by being trained to 

predict the output at the next time step given the previous ones. Therefore, we leverage the inherited architecture 

of RNN for temporal modeling. To model localized spatial dependency, we integrate graph convolutional in the state 

transition in the RNN to incorporate the underlying sensor network structure. Figure 1 shows the overall architecture 

of our proposed convolution RNN design. Graph convolution is firstly used to extract hierarchical features from the 

input time series, i.e., graph signals. These features are able to capture the topological dependency by exploiting the 

underlying sensor locations. Then the extracted features are fed into a deep RNN encoder-decoder pipeline. Both 

the parameters of the graph convolution and the RNN are learned jointly from raw time series data in an end-to-end 

manner. 
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2.1.1 Spatial Dependency Modeling 
The traffic time series data demonstrate strong spatial/topological dependency, i.e., sensors that are close together 

tend to be related in terms of speed and number of cars passing over them than sensors that are apart. This is mainly 

due to (1) network and intersection connectivity and (2) flow conservation, i.e., the number of vehicles entering and 

exiting the road segments are related. We capture these observations by working on the following subtasks.  

 

Graph Attention Mechanism 

Recurrent Neural Network feeds back the output of the previous time frame to the next time frame in the network 

continuously and we can say that the RNN considers all the historical observations, which is a big advantage of using 

RNN to capture continuous temporal dependencies. Yet, the spatial dependency of traffic is rather localized; traffic 

sensors that are close together tend to have strong correlations. To account for such local dependency, we adopt an 

attention mechanism for spatial modeling. Attention mechanism simply puts more weight to more related 

components. To let our model learn the attention mechanism, we train the model to focus only on the close 

neighborhood instead of the entire road network. Then, we take a weighted combination of the hidden states from 

nearby sensors weighted by the attention; nearby sensors will have higher weight values.  The attention mechanism 

is defined as: 

 

             

 

Where ℎ𝑖  denotes the hidden states of sensor i which is extracted using an RNN shared across all the nodes. 𝑛𝑏(𝑖, 𝐾) 

will return the set of neighbors that are within K-hop from node i, and 𝑔𝑖  represents the aggregated hidden state for 

node i that incorporates information from neighborhood nodes. Consequently, the forecasting task of node i will be 

implemented using a fully connected feed-forward network with 𝑔𝑖  as the input. 

 

Graph Laplacian Transformation 

Graph attention mechanism enables local dependency-based road network structure modeling, but in practice, it 

only provides marginal performance gain. This is partly because graph attention only models the topological 

dependency in the vertex (traffic sensor) domain, and yet it fails to capture the “conservation of flow” property in 

traffic. To resolve this issue, we transform the graph representation of road networks with traffic sensors into a 

spectral domain using Graph Laplacian; the transformation to a spectral domain of graphs is a commonly used 

method to better represent the characteristics of the graph. Graph Laplacian is well known to provide insight on 

diffusion (in our case, traffic flow diffusion) in the vertex domain. For instance, applying the Laplacian operator (L) 

to a signal x represents a one-step diffusion of the signal on the graph. We can model the traffic flow change as 
𝜕𝑥𝑖(𝑡)

𝜕𝑡
= 𝑐𝐿𝑖𝑥 with 𝐿𝑖  as the i-th row vector of the graph Laplacian, and c as some constant. This transformation is 

known as the graph convolution kernel, denoted as *g.  To obtain the Laplacian matrix, we construct the adjacency 

matrix based on road network distances with a threshold Gaussian kernel [SNF+03]. The k-th power of Laplacian is 

supported by the k-hop neighbors [SNF+03] representing the spread of traffic flow at a different scale. To model the 

spatial dependency at a different resolution, we compute a weighted sum of the k-th power of Laplacian as the 

spectral transformation. Computing the k-th power Laplacian matrix can be computationally expensive, so we apply 
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the Chebyshev polynomial expansion for efficient approximation; One can obtain polynomials very close to the 

optimal one by expanding the given function in terms of Chebyshev polynomials and then cutting off the expansion 

at the desired degree.  

 

2.1.2 Temporal Dynamics Modeling 
We model the temporal dynamics by leveraging the inherited attributes of RNN. In particular, for temporal dynamics 

modeling, we use the Gated Recurrent Units (GRU) [CGC+14] – one of the variants of RNN - which has a simple 

structure and competitive performance. We incorporate spatial dependencies into GRU by replacing the matrix 

multiplication with the graph convolution ∗g defined in section 2.1.1. This graph convolutional operation is applied 

to both inputs and hidden states to obtain a Graph Convolutional Gated Recurrent Unit (GCGRU). We stack GRU and 

unroll the recurrence for a fixed number of steps T and use backpropagation through time in order to compute 

gradients. Figure 2 shows the road network traffic evolution in 24 hours, going through morning rush hour and 

afternoon rush hour. We observe that in the spectral domain, the traffic speed time series enjoys better sparsity 

than in the vertex domain. This means that the distribution of the transformed input reflects the traffic congestion 

condition. With heavy congestion in rush hours, the spectral distribution of the time series becomes more heavy-

tailed.  

Figure 2. Visualization of 24 hours road network traffic time series evolution in spectral domain with Laplacian 

transformed input (top row) and vertex domain with raw input (bottom row) 

 

 

2.1.3 Event based and Long-Term Forecasting  
We believe that - particularly during long-term forecasting- simply training a model for one step ahead prediction 

and then back feeding the predictions at test time is prone to large error propagation. The forecasting error in earlier 

steps could be quickly amplified over a long-time span. To predict traffic flows in case of events and in long terms 

(e.g., 1 day in the future), we leverage encoder-decoder architecture [SVL+14] as well as scheduled sampling 

[BVG+15].  

In particular, we first feed the historic time series data into a deep RNN encoder and generate final states. 

Then, we use the final states of the encoder as the initial states for a deep RNN decoder, which generates the future 

time series given the current state of the model and the previous ground truth target. In test time, ground truth 

observations become unavailable and are thus replaced by predictions generated by the model itself. The entire 

encoder-decoder model is trained by maximizing the likelihood of generating the target future time series given the 

input. One issue of this approach is the discrepancy in input distribution during training and testing. In training, the 

model only learns to make predictions given the ground truth observations from the last step; however, in testing 
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the model is required to deal with its own mistakes made in previous predictions. To mitigate the issue, we use a 

scheduled sampling approach into the model. Scheduled sampling can be considered as a regularization method to 

prevent the model from overfitting and randomly replaces inputs to the decoder with model predictions during the 

course of training. For instance, a decoder is first trained with the previous ground truth target. After a certain 

amount of iterations, the decoder is fed as the input either the output of the encoder with probability p or the true 

previous ground-truth value with probability (1- p). 

2.2 Evaluation 
We conducted experiments on real-world large-scale datasets: METRA-LA. This traffic dataset contains traffic 

information collected from loop detectors on the highway of Los Angeles County [Jagadish+14]. We selected 207 

sensors and collected 4 months of data ranging from Mar 1st, 2012 to Jun 30th, 2012 for the experiment. We 

aggregated traffic speed readings into 5 minutes of windows and apply Z-Score normalization. 70% of data was used 

for training, 20% was used for testing while the remaining 10% for validation. We compared our traffic forecasting 

model with widely used time series regression models, including (1) HA: Historical Average, which models the traffic 

flow as a seasonal process, and uses weighted average of previous seasons as the prediction; (2) ARIMA: Auto-

Regressive Integrated Moving Average model with Kalman filter which is widely used in time series prediction; (3) 

VAR: Vector Auto-Regression (Hamilton, 1994). (4) SVR: Support Vector Regression which uses linear support vector 

machine for the regression task; The following deep neural network-based approaches are also included: (5) Feed-

forward Neural network (FNN): Feed-forward neural network with two hidden layers and L2 regularization. (6) 

Recurrent Neural Network with Fully Connected LSTM hidden units (FC-LSTM) [Sutskever+14]. All neural network-

based approaches were implemented using Tensorflow [Abadi+16] and trained using Adam optimizer with learning 

rate annealing. The best hyperparameters were chosen using the Tree-structured Parzen Estimator (TPE) 

[Bergstra+11] on the validation dataset. 

 

Table 1. Performance comparison of different approaches for traffic speed forecasting 

 

 

Table 1 shows the comparison of different approaches for 15 minutes, 30 minutes and 1 hour ahead 

forecasting. These methods were evaluated based on a commonly used metric in traffic forecasting, Mean Absolute 

Percentage Error (MAPE); MAPE is a statistical measure of how accurate a forecast system is. It measures this 

accuracy as a percentage and can be calculated as the average absolute percent error for each time period minus 

actual values divided by actual values. Models with lower MAPE values are better. Missing values were excluded in 

calculating these metrics. We observed the following phenomenon. (1) RNN-based methods, including FC-LSTM and 

GCRNN, generally outperform other baselines which emphasizes the importance of modeling the temporal 

dependency. (2) GCRNN achieved the best performance for all forecasting horizons, which suggests the effectiveness 

of spatiotemporal dependency modeling. (3) Deep neural network-based methods including FNN, FC-LSTM, and 

GCRNN, tend to have better performance than linear baselines for long-term forecasting, e.g., 1 hour ahead. This is 

because the temporal dependency becomes increasingly non-linear with the growth of the horizon. Besides, as the 

historical average method does not depend on short-term data, its performance is invariant to the small increases 

Dataset Time HA ARIMA VAR SVR FNN FC-LTM GCRNN 

 
METRA LA 

15 min 13.0% 9.6% 10.2% 9.3% 9.9% 9.6% 7.3% 

30 min 13.0% 12.7% 12.7% 12.1% 12.9% 10.9% 8.8% 

1 hour 13.0% 17.4% 15.8% 16.7% 14.0% 13.2% 10.5% 
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in the forecasting horizon.  

3. Bus Arrival Time Estimation 
Due to the traffic congestion problems, increasing ridership of public transportation has been one of the top primary 

objectives for transportation agencies and policymakers. Historical performance measurements of public 

transportation systems can help identify problems and potential solutions for improving ridership. Beyond historical 

performance measurements, accurate predictive analysis of performance reliability helps to manage rider 

expectations as well as to provide a powerful tool for transportation agencies to coordinate the public transportation 

vehicles.  

We utilize the traffic flow prediction results of our GCRNN to improve the performance reliability of public 

transportation vehicles, especially buses in Los Angeles. First, we implemented Geo-Convolutional Long Short Term 

Memory (Geo-Conv LSTM) based bus arrival time estimation model. Second, we incorporated the traffic prediction 

results into our bus ETA model.  Finally, we compare our method with the existing work in predicting bus arrival 

times.  

 

3.1 Methodology  
We first focus on learning the spatial and temporal dependencies from the raw GPS points of bus trajectories. Second, 

we study how to utilize speed values for predicting bus travel times. Third, we investigate how to integrate external 

factors such as day of the week and personal/driver information. Finally, we work on optimizing the methodology 

to predict the travel time in a long distance as well as in a short distance by utilizing multi-task learning. Our model 

is shown in Figure 3 and we explain each feature in more detail in the following sections.  

 

3.1.1 Spatial Dependency Modeling 
Capturing the spatial dependencies in the GPS sequence of bus trajectories is critical to travel time estimation. A 

standard technique to capture the spatial dependencies is the Convolution Neural Network (CNN); for instance, 2D-

CNN partitions an area into I x J grids and maps each GPS coordinate into a grid cell. However, directly mapping the 

GPS coordinates into a grid cell is not accurate enough to represent the original spatial information in the data. For 

example, we cannot distinguish the turnings if the related locations are mapped into the same cell. Geo-Convolution 

(Geo-Conv) [DON+18] was introduced to capture the spatial dependency in the geo-location sequence while 

retaining the information in fine granularity.  

More specifically, Geo-Conv converts a pair of longitude and latitude of a GPS point into a point in the 16-

dimensional space. For each GPS point 𝑝𝑖  in a bus trajectory, it is a non-linear mapping: 𝑙𝑜𝑐𝑖 =

tanh (𝑊𝑙𝑜𝑐  .  [𝑝𝑖 . 𝑙𝑎𝑡 ⊕ 𝑝𝑖 . 𝑙𝑜𝑛] where ⊕ is the concatenate operation and 𝑊𝑙𝑜𝑐  is a learnable weight matrix. The 

output sequence 𝑙𝑜𝑐 ∈ 𝑅16×𝑛  represents mapped locations. We apply a convolution operation on the sequence 

𝑙𝑜𝑐 along with a 1-dimensional sliding window:  𝑙𝑜𝑐𝑖
𝑐𝑜𝑛𝑣 = 𝛿𝑐𝑛𝑛(𝑊𝑐𝑜𝑛𝑣 ∗ 𝑙𝑜𝑐𝑖:𝑖+𝑘−1 + 𝑏) where * is the convolution 

operation, 𝛿𝑐𝑛𝑛 is an activation function, 𝑙𝑜𝑐𝑖:𝑖+𝑘−1 is a subsequence of 𝑙𝑜𝑐, and 𝑏 is a bias term. This method is 

known to be more useful to capture spatial dependencies of GPS points than traditional CNN (refer [DON+18] for 

more detail). 

3.1.2 Temporal Dynamics Modeling  
To capture the temporal dependencies among bus trajectories/paths, we introduce the recurrent layer in our model. 

The recurrent neural network (RNN) is an artificial neural network that is widely used for capturing temporal 

dependency. In particular, we use LSTM – one of the variants of RNN - which is known to overcome the gradient 
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vanishing problem of RNN and captures the temporal dependencies of long sequences. In our model, we stack two 

LSTM layers on top of one Geo-Conv layer.  

FIGURE 3. GEO-CONVOLUTION LONG SHORT TERM MEMORY NETWORK FOR BUS TRAVEL TIME PREDICTION 

 

3.1.3 Traffic Flow Incorporation  
As mentioned in the introduction, we use traffic prediction values of our GCRNN model to improve the performance 

of our bus ETA model. However, our GCRNN model predicts speed values of traffic sensors given as inputs and it 

doesn’t provide speed values of GPS points in bus trajectories. To estimate the speed value of a GPS point in a bus 

trajectory, we calculate a weighted average of its neighboring sensors’ speed values. More specifically, for each 

location point, we select k nearest traffic sensor and weight-average the predicted speed values of the sensor 

locations. The weights are computed by inversing distance values from the GPS location to the neighboring traffic 

sensor locations; closer sensors have higher weights than farther sensors. Figure 4 illustrates the speed estimation 

process when k is 2. Let 𝑜  be a GPS point we want to estimate speed from its 𝑘  neighboring traffic sensors 

𝑠1, 𝑠2, … , 𝑠𝑘  with their corresponding distances to the GPS point: 𝑑𝑛1, 𝑑𝑛2, … , 𝑑𝑛𝑘 . In this work, the distance 

between GPS points is a geographical distance, the distance measured along the surface of the earth, between two 

pairs of latitude-longitude coordinates. The speed at 𝑜 is calculated as follows: 

 

𝑠𝑝𝑒𝑒𝑑(𝑜) =

𝑠1

𝑑𝑛1
+

𝑠2

𝑑𝑛2
+ ⋯ +

𝑠𝑘

𝑑𝑛𝑘

1
𝑑𝑛1

+
1

𝑑𝑛2
+ ⋯ +

1
𝑑𝑛𝑘

 

 

In addition, we use local distance information, a distance from the starting point to a GPS point in a 

trajectory. For each GPS point 𝑝𝑖 , we concatenate its geo-convolution output with a local distance, a current speed 
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and predicted speed values in the next t time steps. An input vector to LSTM, 𝑙𝑠𝑑𝑖 , now consists of a geo-convolution 

output of a GPS coordinate, a current speed, speed values in next t time steps and a local distance: 

𝑙𝑠𝑑𝑖 = 𝑙𝑜𝑐𝑖
𝑐𝑜𝑛𝑣 ⊕ 𝑠𝑖 ⊕ 𝑑𝑖  

where 𝑙𝑜𝑐𝑖 , 𝑠𝑖 , 𝑑𝑖  are vectorized location values, speed sequences (current speed and predicted speed in next t steps), 

a local distance value of 𝑝𝑖  respectively, and ⊕ is a concatenation operation.  

Figure 4. Example of estimating speed at GPS points using two nearby traffic sensors 

 

 

 
 

3.1.4 Context Aware Travel Time Modeling 
The travel time of a path is affected by many complex factors, such as the start time, the day of the week, the 

weather condition and the driving habits. Bus trajectory data in our repository includes timestamp, vehicle ID and 

driver ID in addition to location information. These data are categorical values, which cannot feed directly to the 

neural network. Each categorical attribute is represented by a one-hot vector; the size of the vector is the number 

of possible categories for each attribute and only the category a value belongs to set to 1 (the rest vector values are 

0). All one-hot vectors are concatenated.  

3.1.5 Model Optimization  
There mainly exist two approaches to estimate the travel time of a path: (1) Individual travel time estimation that 

firstly splits a path into several road segments and estimate the travel time for each local path, finally sums over 

them to get the total travel time and (2) Collective travel time estimation that directly estimates the travel time of 

the entire path. If we adopt the individual estimation, the local errors may accumulate since such method does not 

consider the spatio-temporal dependencies among the local paths. In the meantime, if we use the collective 

estimation, we usually face the data sparsity problem since only a few trajectories traveled through the entire path 

or the longer sub-paths. To prevent this, we use multi-task learning to combine these two methods. Let 𝐿1 be the 

loss of the individual estimation and 𝐿2  be the loss of the collective estimation. The loss that the model minimizes 

is  

𝐿 = 𝛼 × 𝐿1 + (1 − 𝛼) × 𝐿2 

The parameter 𝛼  is the combination coefficient that linearly balances the tradeoff between 𝐿1 and 𝐿2 . In our 

experiment, the parameter 𝛼  was set to 0.05. During the training phase, we enforce the multi-task learning 

component to accurately estimate the travel time of both the entire path and each local path simultaneously. During 

the test phase, we eliminate the local path estimate part and report the estimated travel time of the entire path.  
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3.2 Evaluation and Prototype Development  
At USC’s IMSC with our partnership with Los Angeles Metropolitan Transportation Authority (LA Metro) and 

METRANS, we developed a big transportation data warehouse-Archived Traffic Data Management System (ADMS). 

ADMS fuses and analyzes a very large-scale and high-resolution (both spatial and temporal) traffic sensor data from 

different transportation authorities in Southern California, including California Department of Transportation 

(Caltrans), Los Angeles Department of Transportation (LADOT), California Highway Patrol (CHP), Long Beach Transit 

(LBT). This data set includes both inventory and real-time data with update rate as high as every 30 seconds for 

freeway and arterial traffic sensors (14,500 loop-detectors) covering 4,300 miles, 2,000 bus, and train automatic 

vehicle location (AVL), incidents such as accidents, traffic hazards and road closures reported (approximately 400 

per day) by LAPD and CHP, and ramp meters. We have been continuously collecting and archiving datasets for the 

past 5 years. ADMS, with 11TB annual growth, is the largest traffic sensor data warehouse built so far in Southern 

California. We used the aforementioned real-world data to train and evaluate our approach for estimating the travel 

time of an individual bus given a trajectory/path and a start time. We compared our results with the existing work. 

We also deployed the new capabilities developed in this project as a web service. RTX 2090 Ti GPU (boost clock 1545 

MHz, memory speed: 14Gbps) was used to train and evaluate the models.  

3.2.1 Experiments  
We selected 62,000 trajectories from our data repository collected for two months (April 2017, September 2017) in 

Los Angeles. This data contains location (longitude and latitude), timestamp, and vehicle ID information, which 

allows us to compute ground truth speed values of each GPS point and travel times of bus stops for evaluation. 

50000 trajectories out of 62000 were used for training the Geo-Conv LSTM bus ETA model and the rest was used for 

evaluation.  The mean of each trajectory travel time is 1,344sec. The distance mean is 21km; most of the trajectories 

in the test data are shorter than 20 km. Figure 5 shows the GPS points of all trajectories.  

We compared our bus ETA model with commonly used travel time estimation methods including (1) AVG: 

The estimated travel time = Total distance of the path / Average speed of entire network at the Starting hour in the 

past - training data, (2) Linear Regression (LR) [PED+11]: The estimated travel time = Linear function f of input 

features, (3) Support Vector Regression (SVR) [PED+11]: f is a support vector regression model and (4) Gradient 

Boosting Decision Tree (GDBT) [PED+11]: f is learned based on the boosting of decision tree models. Table 2 shows  

Figure 5. Bus trajectories in LA dataset 
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Table 2. MAPE of Bus ETA methods using LA dataset 

Model MAPE (%) 

AVG 51 

LR 79 

SVR 39 

GBDT 36 

Geo Conv LSTM without traffic prediction 33 

Geo Conv LSTM with traffic prediction 26 

 

Table 3. MAPE with varying the number of neighboring sensors for speed estimation 

#Neighboring sensors  MAPE (%) 

No traffic prediction data (baseline) 6.3 

1 neighbor 8.0 

3 neighbors 7.0 

5 neighbors 5.2 

10 neighbors 5.9 

 

Table 4. MAPE Comparison of speed estimation with different weighted averaging methods 

Estimation Method MAPE (%) 

Equal Weight Average 6.2 

Distance-based Weighted Average 5.2 

 

the comparison of different approaches for estimating travel times. These methods were evaluated based on a 

commonly used metric in traffic forecasting, Mean Absolute Percentage Error (MAPE). We observed the following 

phenomena. (1) RNN-based methods (Geo-Conv LSTM model) generally outperform other baselines which 

emphasizes the importance of modeling the temporal dependency. (2) Geo-Conv LSTM with traffic prediction 

achieves the best performance by 6% MAPE comparing to Geo-Conv LSTM without traffic prediction, which suggests 

the effectiveness of utilizing the traffic forecasting results.  

As explained in section 3.1.3, to estimate the speed value of a GPS point in a bus trajectory, we calculate a 

weighted average of its neighboring sensors’ speed values. To show the effectiveness of our approach, we compared 

the performance of estimating travel times in two different conditions: (1) varying the number of neighboring 

sensors from 1 to 10 (2) using an equal weight vs an inverse distance-based weight for averaging speed values. We 

only used a small dataset for these experiments, 1-day bus trajectories in Los Angeles.  

Table 3 shows that when 5 neighboring sensors were used, our bus ETA approach worked the best with 

17.4% improvement. We observed that MAPE is even worse when the number of neighboring sensors is 1 and 3 

than the model without speed information.  It is difficult to estimate the speed of a GPS point with a small number 

of neighboring sensors. When we increased the number of neighboring sensors to 10, the MAPE increased because 

more unrelated sensors were included for speed estimation. Table 4 shows that the inverse distance-based weighted 

average approach produces better performance. We plan to run the same experiments with a larger dataset.   
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3.2.2 Web Application 
We deployed our bus ETA model as a web service and it’s currently hosted at an Amazon server 

(http://40.117.179.70:3000/app).We’re working on adding this service to our existing web application 

(adms.usc.edu) and the web service will be publicly available. The purpose of our web service is to let users plan a 

trip before ahead with the information of predicted bus arrival times to any bus stops on a selected bus route. Figure 

6 shows the prototype of the dashboard. Using this web service, for example, a user can select a bus route from a 

dropdown menu (Fig 6. top left). The bus route will be shown on the map as well as the names of all the bus stops 

on the selected route (Fig 6. top right) and the user can select a start bus stop (optionally a start time). Then 

Estimated Time of Arrival (ETA) to all the bus stops on the route will be shown on the left sidebar (Fig 6. bottom left) 

and of course, the ETA of bus stops will be shown in a massage box if the user clicks a bus stop on the map. the user 

can see the ETA to the destination bus stop (Fig 6. bottom right). Then the user can figure out when would be the 

best time for him/her to start his/her trip and can also share the arrival time information with friends/family/co-

workers. To make this web service up and run, we designed and implemented the back-end systems as shown in 

figure 7, the web prototype of our bus ETA system consists of five main components:  

FIGURE 6. PROTOTYPE OF BUS ETA WEB APPLICATION DASHBOARD 

 

- Web Client: This is an interactive user interface. When a user selects a bus route, a start, and destination 
locations, it shows an estimated time of arrival.  

- Center Web Service: This is the core component of the bus ETA web application. Every component sends 
and receives any necessary information through this component. For instance, Web Client sends an input 
query with a bus route, a starting point and a destination location, and a starting time to Bus ETA Web 
Service and Traffic Forecasting Web Service through the Center Web Service.  

http://40.117.179.70:3000/app
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- Bus ETA Web Service: This contains our Geo-Conv LSTM based Bus ETA model. It receives an input query 
from Web Client and returns the predicted travel time of the destination.  

- Traffic Forecasting Web Service: This has our GCRNN traffic forecasting model. It predicts the speed of a 
traffic sensor in k time steps.  

- ADMS Database: This is our traffic data warehouse storing traffic data, traffic sensor data, bus trajectory, 
bus route, and vehicle information data, etc.  

 

FIGURE 7. BUS ETA WEB APPLICATION SYSTEM DESIGN 

 

4. Conclusion 
Our data warehouse - Archived Traffic Data Management System (ADMS), with 11TB annual growth, is the 

largest traffic sensor data warehouse built so far in Southern California. Using this big traffic dataset, we have a 

unique opportunity to use data-driven approaches to understand the factors causing traffic congestions and in turn, 

help to forecast the performance reliability of public transportation vehicles. In this paper, we proposed a reliability 

analysis system using Deep Learning (DL) techniques to forecast the future performances of the public bus system 

in Los Angeles. More specifically, we designed and developed a GCRNN traffic forecasting model that captures spatial 

and temporal dependencies as well as long-term forecasting. In turn, we incorporated the traffic prediction results 

of our GCRNN model to the Geo-Conv LSTM bus ETA model and outperform the baseline model (GBDT) by 27% in 

estimating travel times. The system demonstrates the overall approach in an area near downtown Los Angeles and 

shows that incorporating traffic flow predictions can help to forecast short-term bus arrival times accurately (e.g., in 

the next few hours). 

Although our experimental results show significant improvement compared to the state-of-the-art 

baselines methods, modeling Deep Learning (DL) techniques to forecast the future performances of the public 

transportations for large spatial scale (e.g., the entire Los Angeles Metropolitan Area) and long-term (e.g., days 

instead of hours) remains challenging. Reliable long-term forecasting of performance measurement for public 

transportation systems over a large area is essential for policymakers to achieve effective city planning as well as 

promotes ridership. For example, forecasting bus arrival time for the next day helps a rider to plan their commute 

early. Existing approaches typically rely on traffic simulation tools and models that require expert knowledge to 

execute and adjust parameters for various traffic scenarios. We want to expand our current approach and system 

to develop the capability for processing the entire Los Angeles Metropolitan Area for long-term forecasting of a 

variety of public transportation system performance metrics. 
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Data Management Plan  
 

Data Description 

Our partnerships with Los Angeles Metropolitan Transportation Authority (LA Metro) enables our data repository, 
ADMS, to access large and high-resolution (both spatial and temporal) traffic sensor data from a number of 
transportation authorities in Southern California. This dataset includes both sensor metadata and real-time data for 
freeway and arterial traffic sensors (~16,000 loop-detectors) covering 4,300 miles, 2,000 bus and train automatic 
vehicle locations (AVL), and ramp meters with an update rate as high as 30 seconds. The dataset also includes data 
about several incident types (such as accidents, traffic hazards, and road closures) reported by LAPD and CHP at a 
rate of approximately 400 incidents per day. We have been continuously collecting and archiving the 
aforementioned datasets for the past 8 years and with an annual growth of 1.5TB, ADMS is the largest traffic sensor 
data warehouse in Southern California. 

 

Data Format and Content 

We detail the schema and the attribute of each database table in our repository.  

 

Table Name: CONGESTION_INVENTORY 

- Congestion: Data and metadata related to the road network and the congestion. 

- Metadata: Static information about the sensors, i.e., loop detectors. 

Column Description 

AGENCY (string) Agency that provided the record 

CITY (string; nullable) City name 

DATE_AND_TIME (timestamp) Date and time 

LINK_ID (string) Sensor ID 

LINK_TYPE (enum) Sensor type (HIGHWAY, ARTERIAL) 

ON_STREET (string) Street that sensor is on 

FROM_STREET (string; nullable)  

TO_STREET (string; nullable)  

START_LOCATION (geometry) Latitude and longitude of sensor 
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DIRECTION (enum) NORTH,  SOUTH, EAST, WEST, UNSPECIFIED 

POSTMILE (float) Distance from a specific end of the road 

NUM_LANES (integer) Affected number of lanes 

 

Table Name: CONGESTION_DATA 

- Data: Time-series of each sensor. It contains the occupancy, volume, and speed for each sensor at every 
timestep. 

Column Description 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 

LINK_ID (sting) Sensor ID 

OCCUPANCY (float) The percentage of time a sensor detects a vehicle in 30 seconds 

● For example, an occupancy of 5% means that of those 30 

seconds, vehicle presence was detected for an aggregate 1.5 

seconds 

SPEED (float) Distance traveled per unit time, and in traffic operations 

● mean speeds within a given roadway section (link) 

VOLUME (integer) Represents the number of vehicles that passed by per sensor every 30 

seconds 

HOVSPEED (float) Speed on HOV lane(s) 

LIN_STATUS (enum) Status of sensor, “OK”, “FAILED” or “UNKNOWN”. 

 

Table Name: RAMP_METER_INVENTORY 

- Ramp Meters: Complementary to the congestion data. Ramp meters are the entry points to highways 
from arterial roads.  
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- Metadata: Static information about ramp meters. 

Column Description 

RAMP_ID (integer) Unique ramp id 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 

CITY (string; nullable) City name 

MS_ID  

RAMP_TYPE (integer)  

ON_STREET (string) Street that ramp is on 

FROM_STREET (string; nullable)  

TO_STREET (string; nullable)  

LOCATION (geometry) Latitude and longitude of sensor 

DIRECTION (enum) NORTH, SOUTH, EAST, WEST, UNSPECIFIED 

POSTMILE (float) Distance from a specific end of the road 

 

Table Name: RAMP_METER_DATA 

- Data: Time-series and state of each ramp meter at each timestep. 

Column Description 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 

RAMP_ID (sting) Sensor ID 
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MS_ID  

DEVICE_STATUS (integer)  

METER_STATUS (integer)  

METER_CONTROL_TYPE 

(integer) 

 

METER_RATE (integer)  

OCCUPANCY (float) The percentage of time a sensor detects a vehicle in 30 seconds 

● For example, an occupancy of 5% means that of those 30 seconds, 

vehicle presence was detected for an aggregate 1.5 seconds 

SPEED (float) Distance traveled per unit time, and in traffic operations 

● mean speeds within a given roadway section (link) 

VOLUME (integer) Represents the number of vehicles that passed by per sensor every 30 

seconds 

LINK_IDS (string[])  

LINK_TYPES (string[])  

LINK_OCCUPANCIES (float[]) The percentage of time a sensor detects a vehicle in 30 seconds 

● For example, an occupancy of 5% means that of those 30 seconds, 

vehicle presence was detected for an aggregate 1.5 seconds 

LINK_SPEEDS (float[]) Distance traveled per unit time, and in traffic operations 

● mean speeds within a given roadway section (link) 

LINK_VOLUMES (integer[]) Represents the number of vehicles that passed by per sensor every 30 

seconds 

LINK_STATUSES (enum[]) Status of sensors, “OK”, “FAILED” or “UNKNOWN”. 
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Table Name: TRAVEL_TIMES_INVENTORY 

- Travel Times: Computed travel times between sensors. 

- Metadata: Defines the pair of sensors for which travel times are being computed. 

Column Description 

LINK_ID (integer) Unique link id 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 

ROUTE_ID (integer) Unique route id 

DIRECTION (enum) NORTH, SOUTH, EAST, WEST, UNSPECIFIED 

LINK_TYPE (string) Commonly Freeway 

BEGIN_ID (integer) Id of begin link 

BEGIN_STREET_NAME (string)  

BEGIN_LOCATION (geometry)  

END_ID (integer) Id of end link 

END_STREET_NAME (string)  

END_LOCATION (geometry)  

LENGTH (double) Length of link in kilometers. 

 

Table Name: TRAVEL_TIMES_DATA 

- Data: Travel time in minutes and average speed for each link pair. 
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Column Description 

LINK_ID (integer) Unique link id 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 

LINK_SPEED (double) Average link speed in MPH 

LINK_TRAVEL_TIME (double) Estimated time to travel on the link in minutes. 

 

Table Name: BUS_INVENTORY 

- Bus: Static and real-time information about buses. 

- Metadata: Description of bus routes. 

Column Description 

ROUTE_ID (integer) Unique bus route id. 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 

ROUTE_DESCRIPTION (string) Textual description of route. 

ZONE_NUMBERS (int []) Ids of zones that this route operates in. 

 

Table Name: BUS_DATA 

- Data: Tracking information for buses operating on routes. 

Column Description 

BUS_ID (integer)  

AGENCY (string) Agency that provided the record 
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DATE_AND_TIME (timestamp) Date and time 

ROUTE_ID (integer) Unique bus route id. 

LINE_ID (integer)  

RUN_ID (integer)  

ROUTE_DESCRIPTION (string) Textual description of route. 

BUS_DIRECTION NORTH, SOUTH, EAST, WEST, UNSPECIFIED 

BUS_LOCATION  

BUS_LOCATION_TIME  

SCHEDULE_DEVIATION  

NEXT_STOP_LOCATION  

NEXT_STOP_TIME  

NEXT_STOP_SCHEDULED_TIME  

BRT_FLAG  

 

Table Name: CMS_INVENTORY 

- CMS: Static and dynamic information about changeable-message-signs deployed on highways. 

- Metadata: Static information of the signs. 

Column Description 

DMS_ID (integer) Unique device id 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 
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CITY (string; nullable)  

ON_STREET (string) Street that ramp is on 

FROM_STREET (string; nullable)  

TO_STREET (string; nullable)  

LOCATION (geometry) Latitude and longitude of sensor 

DIRECTION (enum) NORTH, SOUTH, EAST, WEST, UNSPECIFIED 

POSTMILE (float) Distance from a specific end of the road 

 

Table Name: CMS_DATA 

- Data: Dynamic information about the state and content of each sign at each timestep. 

Column Description 

DMS_ID (integer) Unique device id 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 

DEVICE_STATUS (string) OK, FAILED 

STATE (string) DISPLAY, BLANK, NO_RESPONSE, UNKNOWN 

DEVICE_TIME (timestamp)  

PHASE1LINE1 (string; nullable)  

PHASE1LINE2 (string; nullable)  

PHASE1LINE3 (string; nullable)  
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PHASE2LINE1 (string; nullable)  

PHASE2LINE2 (string; nullable)  

PHASE2LINE3 (string; nullable)  

 

Table Name: EVENT_DATA 

- Events: Special events, traffic incidents, and other unplanned events. Contains information like when the 

event happened or is planned to happen, what agencies were involved in the resolution, etc. 

Column Description 

EVENT_ID (integer) Unique event id 

AGENCY (string) Agency that provided the record 

DATE_AND_TIME (timestamp) Date and time 

ADMIN_CITY (string; nullable)  

ON_STREET (string) Street that ramp is on 

FROM_STREET (string; 

nullable) 

 

TO_STREET (string; nullable)  

LOCATION (geometry) Latitude and longitude of sensor 

DIRECTION (enum) NORTH, SOUTH, EAST, WEST, UNSPECIFIED 

ADMIN_POSTMILE (float) Distance from a specific end of the road 

TYPE_EVENT (string) CLOSURE, INCIDENT, etc. 

SEVERITY (string) NONE, MINOR, MAJOR, NATURAL_DISASTER 
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EVENT_STATUS (string) CONFIRMED, UNCONFIRMED, SCHEDULED, TERMINATED, OTHER 

DESCRIPTION (string)  

 

Data Access and Sharing  

Although the dataset is collected and maintained by IMSC at our servers, all data in our traffic data repository are 
owned by LA-Metro. We cannot release the data without approval from LA-Metro. We plan to arrange approval 
from LA-Metro for use of the data for research purposes at USC.  
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Appendix A : Acronym 
 

ARIMA: Auto-Regressive Integrated Moving Average 

CNN: Convolution Neural Network 

DL: Deep Learning 

ETA: Estimated Time of Arrival 

FC-LSTM: Fully Connected LSTM 

FNN: Feed-forward Neural network  

GBDT: Gradient Boosted Decision Tree 

GCGRU: Graph Convolutional Gated Recurrent Unit 

GCRNN: Graph Convolutional Recurrent Neural Network 

Geo-Conv: Geo-Convolution 

Geo-Conv LSTM: Geo-Convolution Long Short-Term Memory 

GRU: Gated Recurrent Units 

HA: Historical Average 

LR: Linear Regression 

MAPE: Mean Absolute Percentage Error 

RNN: Recurrent Neural Network 

SVR: Support Vector Regression 

TPE: Tree-structured Parzen Estimator 

VAR: Vector Auto-Regression 
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Appendix B : Code Deliverables Links 
 

Web Service Dashboard  

https://drive.google.com/open?id=1QRdyVq_CW-85-GZjkWR5eUu9QZW77ml3 

 

Deep Bus ETA Model  

https://drive.google.com/open?id=1erSSXUuSGnbeHikNnL0lr8ykKG-1j1Mw 

 

Instruction Documentation 

https://drive.google.com/file/d/1eEmT7TmT1ZoDlp18RjeE5zdINzSmCnOb/view?usp=sharing 

 

https://drive.google.com/open?id=1QRdyVq_CW-85-GZjkWR5eUu9QZW77ml3
https://drive.google.com/open?id=1erSSXUuSGnbeHikNnL0lr8ykKG-1j1Mw
https://drive.google.com/file/d/1eEmT7TmT1ZoDlp18RjeE5zdINzSmCnOb/view?usp=sharing
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